
VLDB Submission Number 138

Local Dimensionality Reduction: A New Approach to Indexing High

Dimensional Spaces�

Kaushik Chakrabarti
University of Illinois

kaushikc@cs.uiuc.edu

Sharad Mehrotra
University of California

sharad@ics.uci.edu

Abstract

Many emerging application domains require database systems to support efficientaccess over highly mul-
tidimensional datasets. The current state-of-the-art technique to indexing high dimensional data is to first
reduce the dimensionality of the data using Principal Component Analysis and then indexing the reduced-
dimensionality space using a multidimensional index structure. The above technique, referred to as global
dimensionality reduction (GDR), works well when the data set is globally correlated, i.e. most of the variation
in the data can be captured by a few dimensions. In practice, datasets are often not globally correlated. In such
cases, reducing the data dimensionality using GDR causes significant loss of distance information resulting in
a large number of false positives and hence a high query cost. Even when a global correlation does not exist,
there may exist subsets of data that are locally correlated. In this paper, we propose a technique called Local
Dimensionality Reduction (LDR) that tries to find local correlations in the data and performs dimensionality
reduction on the locally correlated clusters of data individually. We develop an index structure that exploits
the correlated clusters to efficiently support point, range and k-nearest neighbor queries over high dimensional
datasets. Our experiments on synthetic as well as real-life datasets show that our technique (1) reduces the
dimensionality of the data with significantly lower loss in distance information compared to GDR and (2)
significantly outperforms the GDR, original space indexing and linear scan techniques in terms of the query
cost for both synthetic and real-life datasets.

1 Introduction

With an increasing number of new database applications dealing with highly multidimensional datasets, tech-
niques to support efficient query processing over such data sets has emerged as an important research area.

These applications include multimedia content-based retrieval, exploratory data analysis/data mining, scientific
databases, medical applications and time-series matching. For example, in multimedia retrieval, the objects (e.g.,
images) are represented by their features (e.g., color histograms, texture vectors and shape descriptors) which
define high dimensional feature spaces (HDFS) [17, 37]. In data mining applications, objects are represented

by several numeric attributes which again define a HDFS over which the data mining task (e.g., clustering,
classification) is performed [3, 33]. HDFSs are also becoming increasingly common in scientific (e.g., SDSS’s
astronomy database [41]) and medical databases [30]. To provide efficient access over HDFSs, many indexing
techniques have been proposed in the literature. One class of techniques comprises ofhigh dimensional index

�This work was supported by NSF CAREER award IIS-9734300, and in part by the Army Research Laboratory under Cooperative
Agreement No. DAAL01-96-2-0003.

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2000 2. REPORT TYPE

3. DATES COVERED
 00-00-2000 to 00-00-2000

4. TITLE AND SUBTITLE
Locally Dimensionality Reduction: A New Approach to Indexing High
Dimensional Spaces

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Illinois at Urbana-Champaign,Department of Computer
Science,201 N. Goodwin Avenue,Urbana,IL,61802-2302

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

26

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

(a) (b) (c)

First
Principal

Component

First
Principal

Component

Cluster1

Cluster 2

Principal ComponentFirst
of Cluster1

First Principal Component
of Cluster 2

Figure 1: Global and Local Dimensionality Reduction Techniques (a) GDR(from 2-d to 1-d) on globally corre-
lated data (b) GDR (from 2-d to 1-d) on globally non-correlated (but locally correlated) data (c) LDR (from 2-d

to 1-d) on the same data as in (b)

trees[5, 44, 28, 11, 31, 7]. Although these index structures work well in low to medium dimensionality spaces

(upto 20-30 dimensions), a simple sequential scan usually performs better at higher dimensionalities [6, 43].
To scale to higher dimensionalities, a commonly used approach isdimensionality reduction[20]. This tech-

nique has been proposed for both multimedia retrieval [17, 36, 27, 42] and data mining ([18, 4, 21]) applications.
The idea is to first reduce the dimensionality of the data and then index the reduced space using a multidimen-
sional index structure [17]. Most of the information in the dataset is condensed to a few dimensions (the first

few principal components (PCs)) by using principal component analysis (PCA). The PCs can be arbitrarily ori-
ented with respect to the original axes (see Appendix A for details on PCA). The remaining dimensions (i.e. the
later components) are eliminated and the index is built on the reduced space. To answer queries, the query is
first mapped to the reduced space and then executed on the index structure. Since the distance in the reduced-

dimensional space lower bounds the distance in the original space, the query processing algorithm can guarantee
no false dismissals [17, 16]. The answer set returned can have false positives (i.e. false admissions) which are
eliminated before it is returned to the user. We refer to this technique asglobal dimensionality reduction(GDR)
i.e. dimensionality reduction over theentiredataset taken together.

GDR works well when the dataset isglobally correlatedi.e. most of the variation in the data can be captured

by a few orthonormal dimensions (the first few PCs). Such a case is illustrated in Figure 1(a) where a single
dimension (the first PC) captures the variation of data in the 2-d space. In such cases, it is possible to eliminate
most of the dimensions (the later PCs) with little or no loss of distance information. However, in practice, the
dataset may not be globally correlated (see Figure 1(b)). In such cases, reducing the data dimensionality using

GDR will cause a significant loss of distance information. Loss in distance information is manifested by a large
number of false positives and is measured by precision [27] (cf. Section 5). More the loss, larger the number
of false positives, lower the precision. False positives increase the cost of the query by (1) causing the query
to make unnecessary accesses to nodes of the index structure and (2) adding to the post-processing cost of the

query, that of checking the objects returned by the index and eliminating the false positives. The cost increases
with the increase in the number of false positives. Note that false positives do not affect the quality the answers
as they are not returned to the user.

Even when a global correlation does not exist, there may exist subsets of data that arelocally correlated(e.g.,
the data in Figure 1(b) is not globally correlated but is locally correlated as shown in Figure 1(c)). Obviously, the

correlation structure (the PCs) differ from one subset to another as otherwise they would be globally correlated.
We refer to these subsets ascorrelated clustersor simplyclusters. 1 In such cases, GDR would not be able to

1Note that correlated clusters (formally defined in Section 3) differ from the usual definition of clusters i.e. a set of spatially close

2

obtain a single reduced space of desired dimensionality for the entire dataset without significant loss of query
accuracy. If we perform dimensionality reduction oneach clusterindividually(assuming we can find the clusters)
rather than on the entire dataset, we can obtain a set of different reduced spaces of desired dimensionality (as
shown in Figure 1(c)) which together cover the entire dataset2 but achieves it with minimal loss of query precision

and hence significantly lower query cost. We refer to this approach as local dimensionality reduction (LDR).
Contributions: In this paper, we propose LDR as an approach to high dimensional indexing. Our contribu-

tions can be summarized as follows:

� We develop an algorithm to discover correlated clusters in the dataset. Like any clustering problem, the
problem, in general, is NP-Hard [32]. Hence, our algorithm is heuristic-based. Our algorithm performs
dimensionality reduction ofeach cluster individually to obtain the reduced space (referred to as subspace)
for each cluster. The data items that do not belong to any cluster are outputted as outliers. The algorithm

allows the user to control the amount of information loss incurred by dimensionality reduction and hence
the query precision/cost.

� We present a technique to index the subspaces individually. We present query processing algorithms for
point, range and k-nearest neighbor (k-NN) queries that execute on the index structure. Unlike many

previous techniques [27, 42], our algorithms guarantee correctness of the result i.e. returns exactly the
same answers as if the query executed on the original space. In other words, the answer set returned to the
user has no false positives or false negatives.

� We perform extensive experiments on synthetic as well as real-life datasets to evaluate the effectiveness
of LDR as an indexing technique and compare it with other techniques, namely, GDR, index structure

on the original HDFS (referred to as the original space indexing (OSI) technique) and linear scan. Our
experiments show that (1) LDR can reduce dimensionality with significantly lower loss in query precision
as compared to GDR technique. For the same reduced dimensionality, LDR outperforms GDR by almost an
order of magnitude in terms of precision. and (2) LDR performs significantly better than other techniques,

namely GDR, original space indexing and sequential scan, in terms of query cost for both synthetic and
real-life datasets.

Roadmap: The rest of the paper is organized as follows. In Section 2, we provide an overview of related
work. In Section 3, we present the algorithm to discover the correlated clusters in the data. Section 4 discusses
techniques to index the subspaces and support similarity queries on top of the index structure. In Section 5, we
present the performance results. Section 6 offers the final concluding remarks.

2 Related Work

In this section, we discuss the related work on high dimensional index structures, global dimensionality reduction
and clustering algorithms.

High Dimensional Index Structures Recent research on high dimensional indexing has lead to the develop-
ment of several index structures including X-tree[5], SS-tree [44], SR-tree [28], M-tree [11], TV-tree [31] and
Hybrid-tree [7]. These index structures use novel data/space partitioning strategies and scale better to high dimen-
sionalities compared to spatial index structures (e.g., R-tree, grid file). They are extensively used for similarity

search in multimedia retrieval [17, 10], data mining [14, 3] and decision support [40, 13] applications. Although

points. To avoid confusion, we refer to the latter asspatial clustersin this paper.
2The set of reduced spaces may not necessarily cover the entire dataset as there may be outliers. Weaccount for outliers in our

algorithm.

3

these index structures can scale to medium dimensionalities (upto 20-30 dimensions), above a certain dimension-
ality (referred to as the critical dimensionality), they are outperformed by a simple sequential scan through the
database [43, 6]. The reason is that the data space becomes sparse at high dimensionalities causing the bounding
regions to become large. The query ends up overlapping with most nodes of the tree resulting in a large number

of disk accesses and hence a high query cost. The linear scan performs better in such cases since sequential I/O
is significantly cheaper compared to random I/O. Obviously, the critical dimensionality depends on the dataset
and the index structure used.

Global Dimensionality Reduction GDR techniques has been studied extensively in statistical pattern recog-
nition and multivariate data analysis. The principal component analysis (PCA) or Karhunen-Loeve (K-L) trans-
form is the optimal way of mapping points in aD-dimensional space to points in a d-dimensional space (d � D)
[12, 20]. The mapping is optimal in the sense it minimizes the mean square error (MSE), where the error is

the distance between eachD-d point and itsd-d image. Subsequently, thed-d space is indexed using a mul-
tidimensional index structure and queries are answered using the reduced dimensional index (see [17, 27] for
details).

Clustering Clustering algorithms have been studied recently in the data mining domain (e.g., BIRCH, CLARANS,
DBSCAN and CURE algorithms) [45, 35, 24, 14, 29]. The algorithms most related to this paper are those that dis-
cover patterns in low dimensional subspaces [1, 2]. In [1], Agarwal et. al. present an algorithm, called CLIQUE,
to discover“dense” regions in all subspaces of the original data space. The algorithm works from lower to higher

dimensionality subspaces: it starts by discovering 1-d dense units and iteratively discovers all dense units in
each k-d subspace by building from the dense units in (k-1)-d subspaces. In [2], Aggarwal et. al. present an
algorithm, called PROCLUS, that clusters the data based on their correlation i.e. partitions the data into disjoint
groups of correlated points. The authors use the hill climbing technique, popular in spatial cluster analysis, to

determine the projected clusters. Neither CLIQUE, nor PROCLUS can be used as an LDR technique since they
cannot discover clusters when the principal components are arbitrarily oriented. They can discover only those
clusters that are correlated along one or more of the original dimensions. The above techniques are meant for
discovering interesting patterns in the data; since correlation along arbitrarily oriented components is usually not

that interesting to the user, they do not attempt to discover such correlation. On the contrary, the goal of LDR is
efficient indexing; it must be able to discover such correlation in order to minimize the loss of information and
make indexing efficient. Also, since the motivation of their work is pattern discovery and not indexing, they do
not address the indexing and query processing issues which we have addressed in this paper. To the best of our
knowledge, this is the first paper that proposes to exploit the local correlations in data for the purpose of indexing.

3 Identifying Correlated Clusters

In this section, we formally define the notion of correlated clusters and present an algorithm to discover such
clusters in the data.

3.1 Definitions

In developing the algorithm to identify the correlated clusters, we will need the following definitions.

Definition 1 (Cluster and Subspace)Given a setA of N points in aD-dimensional feature space, we define a
clusterS as a setAS (AS � A) of locally correlated points. Each clusterS is defined byS = h�S ; dS; CS;ASi

where:

4

Symbols Definitions

N Number of objects in the database
M Maximum number of clusters desired
K Actual number of clusters found (K �M)
D Dimensionality of the original feature space
Si Theith cluster
Ci Centroid ofSi
ni Size ofSi (number of objects)
Ai Set of points inSi
�i The principal components ofSi
�

(j)
i Thejth principal component ofSi

di Subspace dimensionality ofSi
� Neighborhood range
MaxReconDist Maximum Reconstruction distance
FracOutliers Permissible fraction of outliers
MinSize Minimum Size of a cluster
MaxDim Maximum subspace dimensionality of a cluster
O Set of outliers

Table 1: Summary of symbols and definitions

� �S are the principal components of the cluster,�
(i)
S denoting theith principal component.

� dS is the reduced dimensionality i.e. the number of dimensions retained. Obviously, the retained dimen-

sions correspond to the firstdS principal components�(i)
S ; 1 � i � dS while the eliminated dimensions

correspond to the next(D� dS) components. Hence we use the terms (principal) components and dimen-
sions interchangeably in the context of the transformed space.
� CS = [C

(dS+1)
S � � �C

(D)
S] is the centroid, that stores, for each eliminated dimension�i; (dS + 1) �

i � D, a single constant which is “representative” of the position of every point in the cluster along this
unrepresented dimension (as we are not storing their unique positions along these dimensions).
� AS is the set of points in the cluster

The reduced dimensionality space defined by�
(i)
S ; 1 � i � dS is called thesubspaceof S. dS is called the

subspace dimensionality ofS.

Definition 2 (Reconstruction Vector) Given a clusterS = h�S ; dS; CS;ASi, we define thereconstruction vec-

tor ReconV ect(Q; S) of a pointQ fromS as follows:

ReconV ect(Q; S) = ��D
i=(dS+1)(Q � �

(i)
S � C

(i)
S)�

(i)
S (1)

where�� denotes vector addition and� denotes scalar product (i.e.Q��(i)
S is the projection ofQ on�(i)

S as shown

in Figure 2).(Q � �
(i)
S � C

(i)
S) is the (scalar) distance ofQ from the centroid along each eliminated dimension

andReconV ector(Q; S) is the vector of these distances.

Definition 3 (Reconstruction Distance)Given a clusterS = h�S ; dS; CS ;ASi, we now define therecon-

struction distance(scalar)ReconDist(Q; S;D) of a pointQ from S. D is the distance function used to

5

ΦS
(2)

ΦS
(1)

Point Q

Projection
of Q on
eliminated
dimension

Cluster S

(Q,S)
ReconDist

(retained dimension)

 First Principal Component

Centroid CS

 eliminated dimension)

Second Principal
Component

(eliminated dimension)

Mean Value E{Q}

(projection of E{Q} on

of points in S

Figure 2: Centroid and Reconstruction Distance.

define the similarity between points in the HDFS. LetD be anLp metric i.e. D(P; P 0) = k P � P 0 kp =

[�d
i=1(jP [i]� P 0[i]j)p]

1=p
. We defineReconDist(Q; S;D) 3 as follows:

ReconDist(Q; S;D) = ReconDist(Q; S; Lp) = k ReconV ect(Q; S) kp = [�D
i=(dS+1)(jQ � �

(i)
S � C

(i)
S j)

p
]
1=p

(2)

For any pointQ mapped to thedS-dimensional subspace ofS, ReconV ect(Q; S) represents the error in

the representation i.e. the vector difference between the exactD-dimensional representation ofQ and its ap-
proximate representation in thedS-dimensional subspace ofS. Higher the error, more the amount of distance
information lost. When averaged over all points inS, we get the average information loss inS which is called
the reconstruction error ofS.

Definition 4 (Reconstruction Error) The reconstruction error�"2(S) of clusterS is defined as the mean square

magnitude ofReconV ect(Q; S) whereQ 2 AS :

�"2(S) = Ef(k ReconV ect(Q; S) k2)
2
g = �D

i=(dS+1)Ef(C
(i)
S � Q � �

(i)
S)

2
g (3)

whereE(X) denotes expected value of X.

3.2 Constraints on Correlated Clusters

Our objective in defining clusters is to identify low dimensional subspaces, one for each cluster, that can be
indexed separately. We desire each subspace to have as low dimensionality as possible without losing too much

distance information. In order to achieve the desired goal, each cluster must satisfy the following constraints:

1. Reconstruction Distance Bound:In order to restrict the maximum representation error of any point in
the low dimensional subspace, we enforce the reconstruction distance of any pointP 2 AS to satisfy
the following condition:ReconDist(P; S) � MaxReconDist whereMaxReconDist is a parameter

specified by the user. This condition restricts the amount of information lost withineach cluster and hence
guarantees a high precision which in turn implies lower query cost.

3Assuming thatD is a fixedLp metric, we usually omit theD in ReconDist(Q;S;D) for simplicity of notation.

6

2. Dimensionality Bound: For efficient indexing, we want the subspace dimensionality to be as low as
possible while still maintaining high query precision. A cluster must not retain any more dimensions that
necessary. In other words, it must retain the minimum number of dimensions required to accommodate
the points in the dataset. Note than a clusterS can accommodate a pointP only if ReconDist(P; S) �

MaxReconDist. To ensure that the subspace dimensionalitydS is below the critical dimensionality of
the multidimensional index structure (i.e. the dimensionality above which a sequential scan is better), we
enforce the following condition:dS �MaxDim whereMaxDim is specified by the user.

3. Choice of Centroid: For each clusterS, we use PCA to determine the subspace i.e.�S is the set of
eigenvectors of the covariance matrix ofAS sorted based on their eigenvalues. [20] shows that for a given

choice of reduced dimensionalitydS , the reconstruction error�"2(S) is minimized by choosing the firstdS
components among�S and choosingCS to be the mean value of the points (i.e. the centroid) projected
on the eliminated dimensions. To minimize the information loss, we chooseC

(i)
S = EfP � �

(i)
S g =

EfPg � �
(i)
S (see Figure 2).

4. Size Bound: Finally, we desire each cluster to have a minimum cardinality (number of points) :nS �

MinSize whereMinSize is user-specified. The clusters that are too small are considered to be outliers.

The goal of the LDR algorithm described below is to discover the setS = S1; S2; :::; SK ofK clusters (where
K � M , M being the maximum number of clusters desired) that exists in the data and that satisfy the above
constraints. The remaining points, that do not belong to any of the clusters, are placed in the outlier setO.

3.3 The Clustering Algorithm

Since the LDR algorithm needs to performlocal correlation analysis (i.e. PCA on subsets of points in the dataset
rather than the whole dataset), we need to first identify the right subsets to perform the analysis on. This poses a

cyclic problem: how do we identify the right subsets without doing the correlation analysis and how do we do the
analysis without knowing the subsets. We break the cycle by usingspatial clustersas an initial guess of the right
subsets. Then we perform PCA on each spatial cluster individually. Finally, we ‘recluster’ the points based on
the correlation information (i.e. principal components) to obtain the correlated clusters. The clustering algorithm

is shown in Table 2. It takes a set of pointsA and a set of clustersS as input. When it is invoked for the first
time,A is the entire dataset and each cluster inS is marked ‘empty’. At the end, each identified cluster is marked
‘complete’ indicating a completely constructed cluster (no further change); the remaining clusters remain marked
‘empty’. The points that do not belong to any of the clusters are placed to the outlier setO. The details of each

step is described below:

� Construct Spatial Clusters(Steps FC1 and FC2): The algorithm starts by constructingM spatial clusters

whereM is the maximum number of clusters desired. We use a simple single-pass partitioning-based
spatial clustering algorithm to determine the spatial clusters [29, 35]. We first choose a set ofC � A of
well-scatteredpoints as the centroids such that points that belong to the same spatial cluster are not chosen
to serve as centroids to different clusters. Such a setC is called apiercing set [2]. We achieve this by
ensuring that each pointP 2 C in the set is sufficiently far from any already chosen pointP 0 2 C i.e.

Dist(P; P 0) > threshold for a user-defined threshold.4 This technique, proposed by Gonzalez [22], is
guaranteed to return a piercing if no outliers are present. To avoid scanning though the whole database

4For subsequent invocations of FindClusters procedure during the iterative algorithm (Step 2 in Table 3), there may exist already
completed clusters (does not exist during the initial invocation). HenceP must also be sufficiently far from all complete clusters formed
so far i.e.ReconDist(P;S) > threshold for each complete cluster S.

7

Clustering Algorithm
Input: Set of PointsA, Set of clustersS (each cluster is either empty or complete)
Output: Some empty clusters are completed, the remaining points form the set of outliersO

FindClusters(A;S;O)
FC1: For each empty cluster, select a random pointP 2 A such thatP is sufficiently far from all completed

and valid clusters. If found, makeP the centroidCi and markSi valid.

FC2: For each pointP 2 A, addP to the closest valid clusterSi (i.e. i = argmin(Distance(P;Ci))) if P
lies in the�-neighborhood ofCi i.e. Distance(P;Ci) � �.

FC3: For each valid clusterSi, compute the principal components�i using PCA. Remove all points fromAi.

FC4: For each pointP 2 A, find the valid clusterSi that, among all the valid clusters requires the min-
imum subspace dimensionalityLD(P) to satisfyReconDist(P; Si) � MaxReconDist (break ties
arbitrarily). If LD(P) �MaxDim, incrementVi[j] for j = 0 to (LD(P) � 1) andni.

FC5: For each valid clusterSi, compute the subspace dimensionalitydi as: di = fjjFi[j] �

FracOutliers andFi[j � 1] > FracOutliersg whereFi[j] =
Vi[j]
ni

.

FC6: For each pointP 2 A, add P to the first valid clusterSi such thatReconDist(P; Si) �
MaxReconDist. If no suchSi exists, add P toO.

FC7: If a valid clusterSi violates the size constraint i.e.(jAij < MinSize), mark it empty. Re-
move each pointP 2 Ai from Si and add it to the first succeeding clusterSj that satisfies
ReconDist(P; Sj) �MaxReconDist or toO if there is no such cluster. Mark the other valid clusters
complete. For each complete clusterSi, map each pointP 2 Ai to the subspace and store it along with
ReconDist(P; S;D).

Table 2: Clustering Algorithm

to choose the centroids, we first construct a random sample of the dataset and choose the centroids from
the sample [2, 19, 24]. We choose the sample to be large enough (using Chernoff bounds [34]) such that

the probability of missing clusters due to sampling is low i.e. there is at least one point fromeach cluster
present in the sample with a high probability [24]. Once the centroids are chosen, we groupeach point
P 2 A with the closest centroidCclosest if Distance(P;Cclosest) � � and update the centroid to reflect the
mean position of its group. IfDistance(P;Cclosest) > �, we ignoreP . The restriction of the neighborhood

range to� makes the correlation analysislocalized. Smaller the value of�, the more localized the analysis.
At the same time,� has to be large enough so that we get a sufficiently large number of points in the cluster
which is necessary for the correlation analysis to be robust.

� Compute PCs(Step FC3): Once we have the spatial clusters, we perform PCA on each spatial clusterSi

individually to obtain the principal components�(i)
S ; i = [1; D] (see Appendix A for details on PCA). We

do not eliminate any components yet. We compute the mean valueMi of the points inSi so that we can
computeReconDist(P; Si) in Steps FC4 and FC5 for any choice of subspace dimensionalitydi. Finally,
we remove the points from the spatial clusters so that they can be reclustered as described in Step FC6.

� Determine Subspace Dimensionality(Steps FC4 and FC5): For each clusterSi, we must retain no more
dimensions than necessary to accommodate the points in the dataset (except the outliers). To determine the

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

Fr
ac

tio
ns

 of
 po

int
s v

iol
ati

ng
 re

co
ns

tru
cti

on
 di

sta
nc

e

#dimensions retained

Figure 3: Determining subspace dimensionality
(MaxDim=32).

x

y

Retained dimension
Eliminated dimension

Eliminated dimension

Retained dimension

Spatial Clusters

Figure 4: Splitting of correlated clusters due to ini-
tial spatial clustering.

number of dimensionsdi to be retained for each clusterSi, we first determine, for each pointP 2 A, the
best cluster, if one exists, for placingP . LetLD(P; Si) denote the the least dimensionality needed for the

clusterSi to representP with ReconDist(P; Si) �MaxReconDist. Formally,

LD(P; Si) = fd j ReconDist(P; Si) �MaxReconDist if di � d (4)

and ReconDist(P; Si) > MaxReconDist otherwise (5)

In other words, the firstLD(P; Si) PCs are just enough to satisfy the above constraint. Note that such
a LD(P; Si) always exists for a non-negativeMaxReconDist. Let LD(P) = min f LD(P; Si)jSi
is a valid clusterg. If LD(P) � MaxDim, there exists a cluster that can accommodateP without
violating the dimensionality bound. LetLD(P; Si) = LD(P) (if there are multiple such clustersSi, break
ties arbitrarily). We saySi is the “best” cluster for placingP sinceSi is the cluster that, among all the
valid clusters, needs to retain the minimum number of dimensions to accommodateP . P would satisfy

theReconDist(P; Si) � MaxReconDist bound if the subspace dimensionalitydi of Si is such that
LD(P; Si) � di � MaxDim and would violate it if0 � di < LD(P; Si). For each clusterSi, we
maintain this information as a count arrayVi[j]; j = [0;MaxDim] whereVi[j] is the number of points
that, among the points chosen to be placed inSi, would violate theReconDist(P; Si) �MaxReconDist

constraint if the subspace dimensionalitydi is j: so in this case (for pointP), we must incrementVi[j] for

j = 0 to (LD(P; Si) � 1) and the total countni of points chosen to be placed inSi. (Vi[j] andni is
initialized to 0 before FC4 begins). On the other hand, ifLD(P) > MaxDim, there exists no cluster in
whichP can be placed without violating the dimensionality bound; so we do nothing.

At the end of the pass over the dataset, for each clusterSi, we have computedVi[j]; j = [0;MaxDim]

andni. We use this to computeFi[j]; j = [0;MaxDim]whereFi[j] is the fraction of points that, among
those chosen to be placed inSi (during FC4), would violate theReconDist(P; Si) � MaxReconDist

constraint if the subspace dimensionalitydi is j i.e. Fi[j] =
Vi[j]
ni

. An example ofFi from one of the
experiments conducted on the real life dataset (cf. Section 5.3) is shown in Figure 3. We choosedi to be
as low as possible without too many points violating the reconstruction distance bound i.e. not more than
FracOutliers fraction of points inSi whereFracOutliers is specified by the user. In other words,di

is the minimum number of dimensions that must be retained so that the fraction of points that violate the
ReconDist(P; Si) � MaxReconDist constraint is no more thatFracOutliers i.e. di = fjjFi[j] �

FracOutliers andFi[j � 1] > FracOutliersg. In Figure 3,di is 21 forFracOutliers = 0:1, 16 for

9

FracOutliers = 0:2 and 14 forFracOutliers = 0:3. We now have all the subspaces formed. In the
next step, we assign the points to the clusters.

� Recluster Points(Step FC6): In the reclustering step, we reassign each pointP 2 A to a clusterS that

coversP i.e. ReconDist(P; S) � MaxReconDist. If there exists no such cluster,P is added to the
outlier setO. If there exists just one cluster that coversP , P is assigned to that cluster. Now we consider
the interesting case of multiple clusters coveringP . In this case, there is a possibility that some of these
clusters are actually parts of the same correlated cluster but has been split due to the initial spatial clustering.

This is illustrated in Figure 4. Since points in a correlated cluster can be spatially distant fromeach other
(e.g., form an elongated cluster in Figure 4) and spatial clustering only clusters spatially close points, it may
end up putting correlated points in different spatial clusters, thus breaking up a single correlated cluster
into two or more clusters. Although such ‘splitting’ does not affect the indexing cost of our technique for

range queries and k-NN queries, it increases the cost of point search and deletion as multiple clusters may
need to searched in contrast to just one when there is no ‘splitting’. (cf. Section 4.2.1). Hence, we must
detect these ‘broken’ clusters and merge them back together. We achieve this by maintaining the clusters
in some fixed order (e.g., order in which they were created). For each pointP 2 P , we check each cluster
sequentially in that order and assign it to the first cluster that coversP . If two (or more) clusters are part

of the same correlated cluster, most points will be covered by all of them but willalwaysbe assigned to
only one them, whichever appears first in the order. This effectively merges the clusters into one since only
the first one will remain while the others will end up being almost empty and will be discarded due to the
violation of size bound in FC7. Note that theFracOutliers bound in Step FC5 still holds i.e. besides

the points for whichLD(P) > MaxDim, no more thatFracOutliers fraction of points can become
outliers.

� Map Points(Step FC7): In the final step of the algorithm, we eliminate clusters that violate the size con-

straint. We remove each point from these clusters and add it to the first succeeding valid clusterSj that
satisfies theReconDist(P; Sj) � MaxReconDist bound or toO otherwise. For the remaining clusters
Si, we map each pointP 2 Ai to the subspace by projectingP to �

(j)
i ; 1 � j � di and refer it as the

(di-d) imageImage(P; Si) of P :

Image(P; Si)[j] = P � �
(j)
i for 1 � j � di (6)

We refer toP as the (D-d) originalOriginal(Image(P; Si); Si) of its imageImage(P; Si). We store the
image of each point along with the reconstruction distanceReconDist(P; Si).

Since FindClusters chooses the initial centroids from a random sample, there is a risk of missing out some

clusters. One way to reduce this risk is to choose a large number of initial centroids but at the cost of slowing
down the clustering algorithm. We reduce the risk of missing clusters by trying to discover more clusters, if
there exists, among the points returned as outliers by the initial invocation of FindClusters. We iterate the above
process as long as new clusters are still being discovered as shown below:

Iterative Clustering
(1) FindClusters(A,S,O); /* initial invocation */
(2) LetO0 be an empty set. Invoke FindClusters(O,S, O0). MakeO0 the new outlier set i.e.

O O0. If new clusters found, go to (2). Else return.

Table 3: Iterative Clustering Algorithm

10

The above iterative clustering algorithm is somewhat similar to the hill climbing technique, commonly used
in spatial clustering algorithms (especially in partitioning-based clustering algorithms like k-means, k-medoids
and CLARANS [29, 35]). In this technique, the “bad quality” clusters (the ones that violate the size bound) are
discarded (Step FC7) and is replaced, if possible, by better quality clusters. However, unlike the hill climbing

approach where all the points are reassigned to the clusters, we do not reassign the points already assigned to
the ‘complete’ clusters. Alternatively, we can follow the hill climbing approach but it is computationally more
expensive and requires more scans of the database [35].

Cost Analysis: We conclude this section with a analysis of the cost of the clustering algorithm. Let us first
analyze the cost of the first invocation of the FindClusters procedure (whereA is the whole dataset). The centroid

selection step (FC1) has a small cost since we are using a random sample andjsamplej � jAj. Step FC2 requires
one pass through the datasetA and has a time complexity ofO(NKD). Step FC3 has a complexity ofO(niD2)

for each clusterSi and hence an overall complexity ofO(ND2) (since�ini � N). This step also has a memory
requirement ofO(niD) for each cluster and hence a maximum ofO(maxi(ni)D) which is smaller than the

memory requirement ofO(ND) of GDR. This is an advantage of LDR over GDR: while the latter requires the
whole dataset to fit in memory, the former requires only the points in the cluster to fit in memory. In either case,
if the memory is too small, we can perform SVD on a sample rather than the whole data [27]. Step FC4 requires
another pass through the database and has a time complexity ofO(ND2K) (assumingMaxDim is a constant).

Step FC5 is a simple step with a complexity ofO(KD). Step FC6 requires a final pass through the database and
has a time complexity ofO(ND2K). Also, the first invocation of FindClusters accounts for most of the cost of
the algorithm since the later invocations have much smaller sets as input and hence much smaller cost. Thus, the
algorithm requires three passes through the dataset (FC2,FC4 and FC6) and a time complexity ofO(ND2K).

4 Indexing Correlated Clusters

Having developed the technique to find the correlated clusters, we now shift our attention to how to use them for
indexing. Our objective is to develop a data structure that exploits the correlated clusters to efficiently support
range and k-NN queries over HDFSs. The developed data structure must also be able to handle insertions and
deletions.

4.1 Data Structure

The data structure, referred to as the global index structure (GI) (i.e. index on entire dataset), consists of separate
multidimensional indices foreach cluster, connected to a single root node. The global index structure is shown
in Figure 5. We explain the various components in details below:

� The Root NodeR of GI contains the following information for each clusterSi: (1) a pointer to the root
nodeRi (i.e. the address of disk block containingRi) of the cluster indexIi (the multidimensional index
onSi), (2) the principal components�i (3) the subspace dimensionalitydi and (4) the centroidCi. It also
contains an access pointerO to the outlier clusterO. If there is an index onO (discussed later),O points

to the root node of that index; otherwise, it points to the start of the set of blocks on which the outlier
set resides on disk.R may occupy one or more disk blocks depending on the number of clustersK and
original dimensionalityD.

� The Cluster Indices:We maintain a multidimensional indexIi for each clusterSi in which we store the
reduced dimensional representation of the points inSi. However, instead of building the indexIi on the

di-d subspace ofSi defined by�(j)
i ; 1 � j � di, we buildIi on the(di+1)-d space, the firstdi dimensions

of which are defined by�(j)
i ; 1 � j � di as above while the(di + 1)th dimension is defined by the

11

(d

index on

(d

index on2 K+1)-d +1)-d(d1
index on

+1)-d

Root containing pointers to root of each cluster index

cluster 1 cluster 2 cluster K

Set of outliers (no index:
sequentially scanned)

Figure 5: The global index structure

reconstruction distanceReconDist(P; Si;D). Including reconstruction distance as a dimension helps to
improve query precision (as explained later). We redefine the imageNewImage(P; Si) of a pointP 2 Ai

as a(di + 1)-d point (rather than adi-d point), incorporating the reconstruction distance as the(di + 1)th
dimension:

NewImage(P; Si)[j] = Image(P; Si)[j] = P � �
(j)
i for 1 � j � di (7)

= ReconDist(P; Si;D) for j = di + 1 (8)

The(di + 1)-d cluster indexIi is constructed by inserting the(di + 1)-d images (i.e.NewImage(P; Si))
of each pointP 2 Ai into the multidimensional index structure using the insertion algorithm of the index
structure. Any disk-based multidimensional index structure (e.g., R-tree [25], X-tree [5], M-tree [11],
Hybrid Tree [7]) can be used for this purpose. We used the hybrid tree in our experiments since it is a

space partitioning index structure (i.e. has “dimensionality-independent” fanout), is more scalable to high
dimensionalities in terms of query cost and can support arbitrary distance metrics [7, 38, 9].

� The Outlier Index:For the outlier setO, we may or may not build an index depending on whether the
original dimensionalityD is below or above the critical dimensionality. In this paper, we assume thatD is

above the critical dimensionality of the index structure and hence choose not to index the outlier set (i.e.
use sequential scan for it).

Like other database index trees (e.g., B-tree, R-tree), the global index (GI) shown in Figure 5 is disk-based.
But it may not be perfectly height balanced i.e. all paths fromR to leaf may not be of exactly equal length. The

reason is that the sizes and the dimensionalities may differ from one cluster to another causing the cluster indices
to have different heights. We found that GI isalmostheight balanced (i.e. the difference in the lengths ofanytwo
paths fromR to leaf is never more than 1 or 2) due to the size bound on the clusters (see Appendix D for details).
Also, its height cannot exceed the height of the original space index by more than 1 (see Appendix D for details).

To guarantee the correctness of our query algorithms (i.e. to ensure no false dismissals), we need to show that

the cluster index distanceslower boundsthe actual distances in the originalD-d space [17, 16]. In other words,
for any twoD-d pointsP andQ,D(NewImage(P,Si), NewImage(Q,Si)) must always lower boundD(P;Q).

Lemma 1 (Lower Bounding Lemma) D(NewImage(P; Si); NewImage(Q;Si)) always lower boundsD(P;Q).

(Proof in Appendix B).

Note that instead of incorporating reconstruction distance as the(di + 1)th dimension, we could have simply
constructed GI with each cluster indexIi defined on the correspondingdi-d subspace�(j)

i ; 1 � j � di. Since
the lower bounding lemma holds for thedi-d subspaces (as shown in [17]), the query processing algorithms
described below would have been correct. The reason we use(di + 1)-d subspace is that the distances in the

12

(di+1)-d subspace upper bounds the distances in thedi-d subspace and hence provides a tighter lower bound to
distances in the original D-d space:

D(NewImage(P; Si); NewImage(Q;Si)) =

[D(Image(P; Si); Image(Q; Si))
p + j(ReconDist(P; Si;D)� ReconDist(Q; Si;D))j

p]1=p

) D(NewImage(P; Si); NewImage(Q;Si)) � D(Image(P; Si); Image(Q;Si)) (9)

Furthermore, the difference between the two (i.e.D(NewImage(P; Si),NewImage(Q; Si)) andD(Image(P; Si),

Image(Q; Si))) is usually significant when computing the distance of the query from a point in the cluster: Say,
P is a point inSi andQ is the query point. Due to the reconstruction distance bound,ReconDist(P; Si;D)

is alwaysa small number (� MaxReconDist). On the other hand,ReconDist(Q; Si;D) can have any arbi-
trary value and is usually much larger thanReconDist(P; Si;D)), thus making the difference quite significant.

This makes the distance computations in the(di + 1)-d more optimistic than that in thedi-d index and hence a
better estimate of the distances in the original D-d space. For example, for a range query, the range condition
(D(NewImage(P; Si); NewImage(Q;Si)) � �) is more optimistic (i.e. satisfies fewer objects) than the range
condition (D(Image(P; Si); Image(Q;Si)) � �), leading to fewer false positives. The same is true for k-NN
queries. Fewer false positives imply lower query cost. At the same time, adding a new dimension also increases

the cost of the query. Our experiments show that decrease in the query cost from fewer false positives offsets the
increase of the cost of the adding a dimension, reducing the overall cost of the query significantly (cf. Section 5,
Figure 12).

4.2 Query Processing over the Global Index

In this section, we discuss how to execute similarity queries efficiently using the index structure described above
(cf. Figure 5). We describe the query processing algorithm for point, range and k-NN queries. For correctness,
the query processing algorithm must guarantee that it always returns exactly the same answer as the query on the
original space [17, 16]. Often dimensionality reduction techniques do not satisfy the correctness criteria [27, 42].

We show that all our query processing algorithms satisfy the above criteria.

4.2.1 Point Search

To find an objectO, we first find the cluster that containsO. It is the first clusterS (in the order mentioned
in Step FC6) for which the reconstruction distance bound is satisfied. If such a clusterS exists, we compute

NewImage(O; S) and find it in the corresponding index by invoking the point search algorithm of the index
structure. The point search returns the object if it exists in the cluster, otherwise it returns null. If no such cluster
S exists,O must be, if at all, inO. So we sequentially search throughO and return it if it exists inO.

4.2.2 Range Queries

A range queryQ = hQ; �;Di retrieves all objectsO in the database that satisfies the range conditionD(Q;O) �

�. The algorithm proceeds as follows (see Appendix C for pseudocode). For each clusterSi, we map the query
anchorQ to its(di+1)-d imageQi (using the principal components�i and subspace dimensionalitydi stored in
the root nodeR of GI) and execute a range query (with the same range�) on the corresponding cluster indexIi
by invoking the procedure RangeSearchOnClusterIndex on the root nodeRi of Ii. RangeSearchOnClusterIndex
is the standard R-tree-style recursive range search procedure that starts from the root node and explores the tree
in a depth-first fashion. It examines the current nodeT : if T is a non-leaf node, it recursively searches each child

13

nodeN of T that satisfies the conditionMINDIST (Q;N;D) � � (whereMINDIST (Q;N;D) denotes
the minimum distance of the(di + 1)-d image of query point to the(di + 1)-d bounding rectangle ofN based
on distance functionD [26, 39]); if T is a leaf node, it retrieves each data itemO stored inT (which is the
NewImage of the originalD-d object) that satisfies the range conditionD(Q;O) � � in the(di + 1)-d space,

accesses the fullD-dimensional tuple on disk to determine whether it is a false positive and adds it to the result
set if it is not a false positive (i.e. it also satisfies the range conditionD(Q;O) � � in the originalD-d space).
After all the cluster indices are searched, we add all the qualifying points from among the outliers to the result
by performing a sequential scan onO. Since the distance in the index space lower bounds the distance in the
original space (cf. Lemma 1), the above algorithm cannot have any false dismissals. The algorithm cannot have

any false positives either as they are filtered out before adding to the result set. The above algorithm thus returns
exactly the same answer as the query on the original space.

In the above discussion, we assumed that we store the reduced representation of the points (i.e. the ‘NewIm-
age’s) in the leaf pages of the cluster indices. Another option was to store the originalD-d point in the leaf pages

(although the index is built on the reduced space). With the former option, the index will have much fewer leaf
nodes than the latter due to the smaller representation. On the other hand, in the latter case, the false positives
can be eliminated at the leaf page level while the former would require an additional page access into the relation
(where the full tuple is stored) to eliminate false positives. Since the index is usually a secondary index, we

assume that for each match, we need to access the full tuple anyway (to retrieve the additional attributes). In that
case, the extra cost of the former option is that of additional page accesses foronlythe false positives (see Section
5.1 for the details on the cost computations). Our experiments show that our technique usually operates in a high
precision zone (> 90%) i.e. has very few false positives. The experiments also show that the smaller size of the
indices in the former approach saves enough query cost to compensate the few extra I/Os due to false positives.

Hence we store just theNewImages in the leaf pages of the index structure.

4.2.3 k Nearest Neighbor Queries

A k-NN queryQ = hQ; k;Di retrieves a setR of k objects such that for any two objectsO 2 R; O0 62 R,

D(Q;O) � D(Q;O0). The algorithm for k-NN queries is shown in Table 4. Like the basic k-NN algorithm
[26, 39], the algorithm uses a priority queuequeue to navigate the nodes/objects in the database in increasing
order of their distances fromQ. Note that we use a single queue to navigate the entire global index i.e. we
explore the nodes/objects of all the cluster indices in an intermixed fashion and do not require separate queues
to navigate the different clusters. Each entry inqueue is either a node or an object and stores 3 fields: the id

of the node/objectT it corresponds to, the clusterS it belongs to and its distancedist from the query anchor
Q. The items (i.e. nodes/objects) are prioritized based ondist i.e. the smallest item appears at the top of the
queue (min-priority queue). For nodes, the distance is defined byMINDIST while for objects, it is the the
point-to-point distance [26, 39]. Initially, foreach cluster, we map the query anchorQ to its (di + 1)-d image

Qi using the information stored in the root nodeR of GI (Line 2). Then, for each cluster indexIi, we compute
the distanceMINDIST (Qi; Ri;D) of Qi from the root nodeRi of Ii and pushRi into queue along with the
distance and the id of the clusterSi to which it belongs (Line 3). We also fill the settemp with thek closest
neighbors ofQ among the outliers by sequentially scanning throughO (Line 4).

After these initialization steps, we start navigating the index by popping the item from the top ofqueue at
each step (Line 11). If the popped item is an object, we compute the distance of the original D-d object (by
accessing the full tuple on disk) fromQ and append it totemp (Lines 12-14). If it a node, we compute the
distance of each of its children to the appropriate query imageQtop:S (wheretop:S denotes the cluster whichtop
belongs to) and push them into the queue (Lines 15-20). Note that the image for each cluster is computed just

14

k-NNSearch(QueryQ = Q; k;Di)

1 for (i=1; i � K; i++)
2 QSi

 NewImage(Q,Si);
3 queue.push(Si; Ri;MINDIST (Qi; Ri;D));
4 Add totemp thek closest neighbors ofQ amongO (using linear scan)
5 while (not queue.IsEmpty())
6 top=queue.Top();
7 for each object O intemp such thatO:dist � top:dist

8 temp temp �O;
9 result = result [O;
10 retrieved++;
11 if (retrieved = k)return result;
12 queue.Pop();
13 if top:T is an object
14 top:dist = D(Q;Original(top:T; top:S));
15 temp = temp [top:T ;
16 else iftop:T is a leaf node
17 for each objectO in top:T

18 queue.push(top.S, O,D(Qtop:S ; O));
19 else/* top:T is an index node */
20 for each childN of top:T
21 queue.push(top.S,N ,MINDIST (Qtop:S ; N;D));

Table 4: k-NN Query.

once (in Step 2) and is reused here. We move an objectO from temp to result only when we are sure that it is
among thek nearest neighbors ofQ i.e. there exists no objectO0 62 result such thatD(O0; Q) < D(O;Q) and
jresultj < k. The second condition is ensured by the exit condition in Line 11. The conditionO:dist � top:dist

in Line 7 ensures that there exists nounexploredobjectO0 such thatD(O0; Q) < D(O;Q). The proof is simple:
O:dist � top:dist impliesO:dist � D(NewImage(O0; S); NewImage(Q;S)) for any unexplored object
O0 in a clusterS (by the property of min-priority queue) which in turn impliesD(O;Q) � D(O0; Q) (since
D(NewImage(O0; S); NewImage(Q;S)) lower boundsD(O0; Q), see Lemma 1). By inserting the objects in

temp (i.e. already explored items) intoresult in increasing order of their distances in the original D-d space (by
keepingtemp sorted), we also ensure there exists noexploredobjectO0 such thatD(O0; Q) < D(O;Q). This
shows that the algorithm returns the correct answer i.e. the exact set of objects as the query in the original D-d
space. It is also easy to show that the algorithm is I/O optimal.

Lemma 2 (Optimality of k-NN algorithm) The k-NN algorithm is optimal i.e. it does not explore any object

outside the range ofkth nearest neighbor. (Proof in Appendix C).

4.3 Modifications

We assume that the data is static in order to build the index. However, we must support subsequent inser-
tions/deletions of the objects to/from the index efficiently. To insert an objectO, we find the first clusterS (in

the order mentioned earlier) for which the reconstruction distance bound is satisfied i.e.ReconDist(O; S;D) �

15

ReconError. If such a cluster exists, we computeNewImage(O; S) and insert it into the corresponding index
using the insertion algorithm of the index structure. Otherwise, we appendO toO.

The deletion algorithm is also simple. To delete an objectO, we first findO by invoking the point search
algorithm (cf. Section 4.2.1). If it is found in a cluster, we delete it using the deletion algorithm of the index

structure; else if it is found inO, we delete it fromO; else, we return not found.
If the database is dynamic (i.e. frequent insertions and deletions), the principal components need to be updated

from time to time. One option is to repeat the entire clustering algorithm and construct the index structure from
scratch. This can be done more efficiently using techniques proposed by Ravi Kanth et. al. [27]. The idea is to
use aggregate data, obtained from the cluster indices, to recompute the principal components for each cluster and

then incorporate the new components back into the cluster indices. [27] shows that this technique improves the
recomputation time significantly without degrading the quality of the index structure. We can use their approach
to handle dynamic databases. On the other hand, if the database is more or less static (i.e. insertions and deletions
are rare) as is often the case [17, 15], such recomputations are not necessary.

5 Experiments

In this section, we present the results of an extensive empirical study we have conducted to (1) evaluate the
effectiveness of LDR as a high dimensional indexing technique and (2) compare it with other techniques, namely,
GDR, original space indexing (OSI) and linear scan. We conducted our experiments on both synthetic and real-
life datasets. The major findings of our study can be summarized as follows:

� High Precision: LDR provides up to an order of magnitude improvement in precision over the GDR
technique at the same reduced dimensionality. This indicates that LDR can achieve the same reduction as
GDR with significantly lower loss of distance information.

� Low Query Cost: LDR consistently outperforms other indexing techniques, namely GDR, original space

indexing and sequential scan, in terms of query cost (combined I/O and CPU costs) for both synthetic and
real-life datasets.

Thus, our experimental results validate the thesis of this paper that LDR is an effective indexing technique for
high dimensional datasets. All experiments reported in this section were conducted on a Sun Ultra Enterprise

450 machine with 1 GB of physical memory and several GB of secondary storage, running Solaris 2.5.

5.1 Experimental Methodology

We conduct the following two sets of experiments to evaluate the LDR technique and compare it with other
indexing techniques.

Precision Experiments Due to dimensionality reduction, both GDR and LDR, cause loss of distance informa-
tion (e.g., in Figure 15 in Appendix A, the distance between D and E is lost due to elimination of the second
principal component). More the number of dimensions eliminated, more the amount of information lost. We
measure this loss byprecisiondefined asPrecision =

jRoriginalj

jRreducedj
whereRreduced andRoriginal are the sets of

answers returned by the range query on the reduced dimensional space and the original HDFS respectively [27].

Fork-NN queries,Roriginal is the set ofk actual answers whileRreduced is the set of objects we need to explore
before being sure that we seen all thek actual answers. Note that the set(Rreduced�Roriginal) represent the false
positives; soPrecision = 1

1+ jfalse positivesj
jRoriginal j

. We repeat that since our algorithms guarantee that the user always

gets back the correct setRoriginal of answers (as if the query executed in the original HDFS), precision doesnot

measure the quality of the answers returned to the user but just the information loss incurred by the DR technique

16

and hence the query cost. For a DR technique, if we fix the reduced dimensionality, the higher the precision, the
lower the cost of the query, the more efficient the technique. We compare the GDR and LDR techniques based
on precision at fixed reduced dimensionalities.

Cost Experiments We conducted experiments to measure the query cost (I/O and CPU costs) for each of the
following four indexing techniques. We describe how we compute the I/O and CPU costs of the techniques
below.

� Linear Scan:In this technique, we perform a simple linear scan on the original high dimensional dataset.
The I/O cost in terms of sequential disk accesses isN�(D�sizeof(float)+sizeof(id))

PageSize . Sincesizeof(id) �
(D � sizeof(float)), we will ignore thesizeof(id) henceforth. Assuming sequential I/O is 10 times
faster than random I/O, the cost in terms of the random accesses isN�sizeof(float)�D)

10�PageSize . The CPU cost is the
cost of computing the distance of the query from each point in the database.

� Original Space Indexing (OSI):In this technique, we build the index on the original HDFS itself using a
multidimensional index structure. We use the hybrid tree as the index structure. The I/O cost (in terms of
random disk accesses) of the query is the number of nodes of the index structure accessed. The CPU cost
is the CPU time (excluding I/O wait) required to navigate the index and return the answers.

� GDR: In this technique, we peform PCA on the original dataset, retain the first few principal components
(depending on the desired reduced dimensionality) and index the reduced dimensional space using the
hybrid tree index structure. In this case, the I/O cost has 2 components: index page accesses (discussed in
OSI) and accessing the full tuples in the relation for false positive elimination (post processing cost). The
post processing cost can be one I/O per false positives in the worst case. However, as observed in [23],

this assumption is overly pessimistic (and is confirmed by our experiments). We, therefore, assume the
postprocessing I/O cost to benum false positives

2 . The total I/O cost (in number of random disk accesses)
is index page access cost+ num false positives

2 . The CPU cost is the sum of the index CPU cost and the
post processing CPU cost i.e. cost of computing the distance of the query from each of the false positives.

� LDR: In this technique, we index each cluster using the hybrid tree multidimensional index structure and
used a linear scan for the outlier set. For LDR, the I/O cost of a query has 3 components: index page
accesses for each cluster index, linear scan on the outlier set andaccessing the full tuples in the relation
(post processing cost). The total index page access cost is the total number of nodes accessed of all the

cluster indices combined. The number of sequential disk accesses for the outlier scan isjOj�D�sizeof(float)
PageSize .

The cost of outlier scan in terms of randomaccesses isjOj�sizeof(float)�D)
10�PageSize . The postprocessing I/O cost

is num false positives
2 (as discussed above). The total I/O cost (in number of random disk accesses) is

index page access cost + jOj�sizeof(float)�D)
10�PageSize + num false positives

2 . Similarly, the CPU cost is the sum
of the index CPU cost, outlier scan CPU cost (i.e. cost of computing the distance of the query fromeach

of the outliers) and the post processing cost (i.e. cost of computing the distance of the query fromeach of
the false positives).

We chose the hybrid tree as the index structure for our experiments since it is a space partitioning index
structure (“dimensionality-independent” fanout) and has been shown to scale to high dimensionalities [7, 38, 9].
5 We use a page size of 4KB for all our experiments.

5The performance gap between our technique and the other techniques was even greater with SR-tree [28] as the index structure due
to higher dimensionality curse [7]. We do not report those results here but can be found in the full version of the paper [8].

17

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2

Pr
ec

isi
on

Skew (z)

LDR
GDR

Figure 6: Sensitivity of precision to
skew.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Pr
ec

isi
on

Number of Clusters (n)

LDR
GDR

Figure 7: Sensitivity of precision to
number of clusters.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2

Pr
ec

isi
on

Degree of Correlation (p)

LDR
GDR

Figure 8: Sensitivity of precision to
degree of correlation.

5.2 Experimental Results - Synthetic Data Sets

Synthetic Data Sets and Queries In order to generate the synthetic data, we use a method similar to that
discussed in [45] but appropriately modified so that we can generate the different clusters in subspaces of dif-
ferent orientations and dimensionalities. The synthetic dataset generator is described in Appendix F. The input
parameters to the data generator and their default values are shown in Table 6 (Appendix F).

We generated 100 range queries by selecting their query anchors randomly from the dataset and choosing a
range value such that the average query selectivity is about 2%. We tested with only range queries since the
k-NN algorithm, being optimal, is identical to the range query with the range equal to the distance of thekth
nearest neighbor from the query (Lemma 3). We useL2 distance (Euclidean) as the distance metric. All our

measurements are averaged over the 100 queries.

Precision Experiments In our first set of experiments, we carry out a sensitivity analysis of the GDR and
LDR techniques to parameters like skew in the size of the clusters (zsize), number of clusters (k) and degree of

correlation (p). In each experiment, we vary the parameter of interest while the remaining parameters are fixed
at their default values. We fix the reduced dimensionality of the GDR technique to 15. We fix the average sub-
space dimensionality of the clusters (i.e.�K

i=1
nidi
K) also to 15 by choosingFracOutliers andMaxReconDist

appropriately (FracOutliers = 0:1 andMaxReconDist = 0:5). Figure 6 compares the precision of the LDR

technique with that of GDR for various value ofzsize . LDR achieves about 3 times higher precision compared
to GDR i.e. the latter has more than three times the number of false positives as the former. The precision of
neither technique changes significantly with the skew. Figure 7 compares the precision of the two techniques for
various values ofk. As expected, for one cluster, the two techniques are identical. Ask increases, the precision

of GDR deteriorates while that of LDR is independent of the number of clusters. Fork = 10, LDR is almost
an order of magnitude better compared to GDR in terms of precision. Figure 8 compares the two techniques for
various values ofp. As the degree of correlation decreases (i.e. the value ofp increases), the precision of both
techniques drop but LDR outperforms GDR for all valuesp. Figure 9 shows the variation of the precision with
the reduced dimensionality. For the GDR technique, we vary the reduced dimensionality from 15 to 60. For the

LDR technique, we vary theFracOutliers from 0.2 to 0.01 (0.2, 0.15, 0.1, 0.05, 0.02, 0.01) causing the average
subspace dimensionality to vary from 7 to 42 (7, 10, 12, 14, 23 and 42) (MaxDim was 64). The precision of
both techniques increase with the increase in reduced dimensionality. Once again, LDR consistently outperforms
GDR at all dimensionalities. The above experiments show that LDR is a more effective dimensionality reduction

technique as it can achieve the same reduction as GDR with significantly lower loss of information (i.e. high

18

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60

Pr
ec

isi
on

Dimensions

LDR
GDR

Figure 9:Sensitivity of precision to re-
duced dimensionality.

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60

I/O
 C

os
t (

ra

nd
om

 d
isk

 a
cc

es
se

s)

Dimensions

I/O cost
Total I/O cost

Original Space Index
Linear Scan

Figure 10:Comparison of LDR, GDR,
Original Space Indexing and Linear
Scan in terms of I/O cost. For lin-
ear scan, the cost is computed as:
num sequential disk accesses

10 .

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

CP
U

Co
st

(s
ec

)

Dimensions

LDR
GDR

Original Space Index
Linear Scan

Figure 11:Comparison of LDR, GDR,
Original Space Indexing and Linear
Scan in terms of CPU cost.

precision) and hence significantly lower cost as confirmed in the cost experiments described next.

Cost Experiments We compare the 4 techniques, namely LDR, GDR, OSI and Linear Scan, in terms of query
cost for the synthetic dataset. Figure 10 compares the I/O cost of the 4 techniques. Both the LDR and GDR
techniques have U-shaped cost curves: when the reduced dimensionality is too low, there is a high degree of
information loss leading to a large number of false positives and hence a high post-processing cost; when it is

too high, the index page access cost becomes too high due to dimensionality curse. The optimum points lies
somewhere in the middle: it is at dimensionality 14 (about 250 random diskaccesses) for LDR and at 40 (about
1200 random disk accesses) for GDR. The I/O cost of OSI and Linear Scan is obviously independent of the
reduced dimensionality. LDR significantly outperforms all the other 3 techniques in terms of I/O cost. The only

technique that comes close to LDR in terms of I/O cost is the linear scan (but LDR is 2.5 times better as the
latter performs 6274 sequential accesses� 627 random accesses). However, linear scan loses out mainly due to
its high CPU cost shown in Figure 11. While LDR, GDR and OSI techniques have similar CPU cost (at their
respective optimum points), the CPU cost linear scan is almost two orders of magnitude higher that the rest. LDR

has slightly higher CPU cost compared to GDR and OSI since it uses linear scan for the outlier set: however, the
savings in the I/O cost over GDR and OSI (by a factor of 5-6) far offsets the slightly higher CPU cost.

5.3 Experimental Results - Real-Life Data Sets

Description of Dataset Our real-life data set (COLHIST dataset [7]) comprises of8�8 color histograms (64-d
data) extracted from about 70,000 color images obtained from the Corel Database (http://corel.digitalriver.com/)
and is available online at the UCI KDD Archive web site (http://kdd.ics.uci.edu/databases/CorelFeatures). We

generated 100 range queries by selecting their query anchors randomly from the dataset and choosing a range
value such that the average query selectivity is about 0.5%. All our measurements are averaged over the 100
queries.

Cost Experiments First, we evaluate the impact of addingReconDist as an additional dimension of each
cluster in the LDR technique. Figure 12 shows that the additional dimension reduces the cost of the query
significantly. We performed the above experiment on the synthetic dataset as well and observed a similar result.

19

300

350

400

450

500

550

600

650

700

750

800

850

0 5 10 15 20 25 30 35 40

I/O
 C

os
t (

r
an

do
m

dis
k a

cc
es

se
s)

Dimensions

LDR (with extra dim)
LDR (without extra dim)

Figure 12: Effect of adding the extra
dimension.

200

400

600

800

1000

1200

1400

1600

1800

10 15 20 25 30

I/O
 C

os
t (

r
an

do
m

dis
k a

cc
es

se
s)

Dimensions

LDR
GDR

Original Space Index
Linear Scan

Figure 13:Comparison of LDR, GDR,
Original Space Indexing and Linear
Scan in terms of I/O cost. For lin-
ear scan, the cost is computed as:
num sequential disk accesses

10 .

0

5

10

15

20

25

30

35

40

45

10 15 20 25 30

CP
U

Co
st

(se
c)

Dimensions

LDR
GDR

Original Space Index
Linear Scan

Figure 14:Comparison of LDR, GDR,
Original Space Indexing and Linear
Scan in terms of CPU cost.

6 Figure 13 compares the 4 techniques, namely LDR, GDR, OSI and Linear Scan, in terms of I/O cost. LDR

outperforms all other techniques significantly. Again, the only technique that come close to LDR in I/O cost (i.e.
number of random disk accesses) is the linear scan. However, again, linear scan turns out to significantly worse
compared to LDR in terms of the overall cost due to its high CPU cost as shown in Figure 14.

6 Conclusion

With numerous emerging applications requiring efficient access to high dimensional datasets, there is a need
for scalable techniques to indexing high dimensional data. In this paper, we proposed local dimensionality re-
duction (LDR) as an approach to indexing high dimensional spaces. We developed an algorithm to discover
the locally correlated clusters in the dataset and perform dimensionality reduction oneach of them individually.

We presented an index structure that exploits the correlated clusters to efficiently support similarity queries over
high dimensional datasets. We have shown that our query processing algorithms are correct and optimal. We
conducted an extensive experimental study with synthetic as well as real-life datasets to evaluate the effective-
ness of our technique and compare it to GDR, original space indexing and linear scan techniques. Our results

demonstrate that our technique (1) reduces the dimensionality of the data with significantly lower loss in distance
information compared to GDR, outperforming GDR by almost an order of magnitude in terms of query precision
(for the same reduced dimensionality) and (2) significantly outperforms all the other 3 techniques (namely, GDR,
original space indexing and linear scan) in terms of the query cost for both synthetic and real-life datasets.

7 Acknowledgements

We thank David Eppstein and Padhraic Smyth for the useful discussions on the clustering algorithm. We thank
Kriengkrai Porkaew for the discussions and his help with the implementation. We thank Corel Corporation for
making the large collection of images used in the COLHIST dataset available to us. Our PCA implementation is
built on top of the Meschach Library downloaded fromhttp://www.netlib.org/c/meschach/ .

6We also analyzed the sensitivity of the LDR technique to theMaxReconDist parameter. The result is included in Appendix G.

20

References

[1] R. Agarwal, J. Gehrke, D. Gunopolos, and P. Raghavan. Automatic subspace clustering of high dimensional data for
data mining applications.Proc. of SIGMOD, 1998.

[2] C. Aggarwal, C. Procopiuc, J. Wolf, P. Yu, and J. Park. Fast algorithms for projected clustering.Proc. of SIGMOD,
1999.

[3] M. Ankerst, M. Breunig, H. Kriegel, and J. Sander. Optics:ordering points to identify the clustering structure.Proc.
of SIGMOD, 1999.

[4] D. Barbara, W. DuMouchel, C. Faloutsos, P. Haas, J. Hellerstein, Y. Ionnidis, H. Jagadish, T. Johnson, R. Ng, V. Poos-
ala, K. Ross, and K. Sevcik. The new jersey data reduction report.Data Engineering, 20(4), 1997.

[5] S. Berchtold, D. A. Keim, and H. P. Kriegel. The x-tree: An index structure for high-dimensional data.Proc. of
VLDB, 1996.

[6] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is “nearest neighbor” meaningful?Proc. of ICDT,
1998.

[7] K. Chakrabarti and S. Mehrotra. The hybrid tree: An index structure for high dimensional feature spaces.Proceedings
of the IEEE International Conference on Data Engineering, March 1999.

[8] K. Chakrabarti and S. Mehrotra. Local dimensionality reduction: A new approach to indexing high dimensional
spaces.Technical Report, TR-MARS-00-04, University of California at Irvine, 2000.

[9] K. Chakrabarti, K. Porkaew, and S. Mehrotra. Supporting query refinement in multimedia databases.Technical
Report, MARS-TR-99-06, 1999.

[10] K. Chakrabarti, K. Porkaew, and S. Mehrotra. Efficient query refinement for multimedia similarity retrieval.Proc. of
ICDE, 2000.

[11] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method for similarity search in metric spaces.Proc.
of VLDB, 1997.

[12] R. Duda and P. Hart. Pattern classification and scene analysis.Wiley, New York, 1973.
[13] M. Ester, J. Kohlhammer, and H. Kriegel. The dc-tree: A fully dynamic index structure for data warehouses.Proc. of

ICDE, 2000.
[14] M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial

databases with noise.Proc. of KDD Conference, 1996.
[15] R. Fagin. Fuzzy queries in multimedia database systems.Proceedings of PODS, 1998.
[16] C. Faloutsos. Fast searching by content in multimedia databases.Data Engineering Bulletin 18(4), 1995.
[17] C. Faloutsos, W. Equitz, M. Flickner, W. Niblack, D. Petkovic, and R. Barber. Efficient and effective querying by

image content. InJournal of Intelligent Information Systems, Vol. 3, No. 3/4, pages 231–262, July 1994.
[18] C. Faloutsos and K.-I. D. Lin. Fastmap: A fast algorithm for indexing, data-mining and visualization of traditional

and multimedia datasets. InProc. ACM SIGMOD, pages 163–174, May 1995.
[19] U. Fayyad, C. Reina, and P. Bradley. Initialization of iterative refinement clustering algorithms.Proc. of KDD, 1998.
[20] K. Fukunaga.Introduction to Statistical Pattern Recognition. Academic Press, second edition edition, 1990.
[21] V. Ganti, R. Ramakrishnan, J. Gehrke, A. Powell, and J. French. Clustering large datasets in arbitrary metric spaces.

Proc. of ICDE, 1999.
[22] T. Gonzalez. Clustering to minimize the maximum intercluster distance.Theoretical Computer Science, 1985.
[23] J. Gray and A. Reuter.Transaction Processing: Concepts and Techniques. Morgan Kaufmann, San Mateo, CA, 1993.
[24] S. Guha, R. Rastogi, and K. Shim. Cure: An efficient clustering algorithm for large databases.Proc. of SIGMOD,

1998.
[25] A. Guttman. R-trees: A dynamic index structure for spatial searching. InProc. ACM SIGMOD Conf., pp. 47–57.,

1984.
[26] G. R. Hjaltason and H. Samet. Ranking in spatial databases.Proceedings of SSD, 1995.
[27] K. V. R. Kanth, D. Agrawal, and A. K. Singh. Dimensionality reduction for similarity searching dynamic databases.

Proc. of SIGMOD, 1998.
[28] N. Katayama and S. Satoh. The sr-tree: An index structure for high dimensional nearest neighbor queries.Proc. of

SIGMOD, 1997.
[29] L. Kaufman and P. Rousseeuw. Finding groups in data: An introduction to cluster analysis.John Wiley and Sons,

1990.

21

[30] F. Korn, N. Sidiropoulos, and C. Faloutsos. Fast nearest neighbor search in medical image databases.Proc. of VLDB,
1996.

[31] K. Lin, H. V. Jagadish, and C. Faloutsos. The TV-tree - an index stucture for high dimensional data. InVLDB Journal,
1994.

[32] N. Megiddo and A. Tamir. On the complexity of locating linear facilities in the plane.Operation Research Letters,
1982.

[33] T. Mitchell. Machine learning.McGraw Hill, 1997.
[34] R. Motwani and P. Raghavan.Randomized Algorithms. Cambridge University Press, 1995.
[35] R. Ng and J. Han. Efficient and effective clustering methods for spatial data mining.Proc. of VLDB, 1994.
[36] R. Ng and A. Sedighian. Evaluating multidimensional indexing structures for images transformed by principal com-

ponent analysis.Proc. of SPIE Conference, 1996.
[37] M. Ortega, Y. Rui, K. Chakrabarti, S. Mehrotra, and T. Huang. Supporting similarity queries in mars.Proc. of ACM

Multimedia 1997, 1997.
[38] K. Porkaew, K. Chakrabarti, and S. Mehrotra. Query refinement for content-based multimedia retrieval in MARS.

Proceedings of ACM Multimedia Conference, 1999.
[39] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries.Proceedings of SIGMOD, 1995.
[40] N. Roussopoulos, Y. Kotidis, and M. Roussopoulos. Cubetree: Organization of and bulk incremental updates on the

data cube.Proc. of SIGMOD, 1997.
[41] A. Szalay, P. Kunszt, A. Thakar, and J. Gray. Designing and mining multi-terabyte astronomy archives: The sloan

digital sky survey.Proc. of SIGMOD, 2000.
[42] M. Thomas, C. Carson, and J. Hellerstein. Creating a customized access method for blobworld.Proc. of ICDE, 2000.
[43] R. Weber, H. Schek, and S. Blott. A quantitative analysis and performance study for similarity-search methods in

high dimensional spaces.Proc. of VLDB, 1998.
[44] D. White and R. Jain. Similarity indexing with the ss-tree.Proc. of ICDE, 1995.
[45] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: An efficient data clustering method for very large databases.Proc.

of SIGMOD, 1996.

22

The material in this appendix can be read at the discretion of the reviewer and has been included only
for the purpose of completeness.

A Principal Component Analysis

PCA examines the variance structure in the data and determines the directions along which the data exhibits
high variance. The first principal component accounts for as much of the variability in the data as possible, and
each succeeding component accounts for as much of the remaining variability as possible. Figure 15 shows a set
of points and the two principal components. Since the first few principal components account for most of the
variation in the data, the rest can be eliminated without significant loss of information. For example, in Figure

15, the second principal component can be eliminated, thus reducing the dimensionality from 2 to 1. The 1-d
images of the 2-d points are obtained by projecting them on the first principal component (shown by squares in
Figure 15). The reduced dimensional points are then indexed using an index structure.

(eliminated dimension)

A
B

C G

D

E
F

H

Point in 2-d space

Point in 1-d space (after dim. reduction)

variance (retained dimension)

First Principal Component
i.e. direction of maximum

Second Principal Component

Figure 15: Global Dimensional Reduction (PCA or K-L Transform technique) where D=2, d=1.

We now describe how the principal components are computed algebraically. LetA be theN �D data matrix
whose each row corresponds to a point in the original D-dimensional space. The first principal component

is the eigenvector corresponding to the largest eigenvalue of the variance-covariance matrix ofA, the second
component correspond to the eigenvector with the second largest eigenvalue and so on. The mapping (to reduced
dimensionality) corresponds to the well known Singular Value Decomposition (SVD) of data matrixA and can
be done inO(ND2) time.

B Lower Bounding Lemma

Lemma 3 (Lower Bounding Lemma) D(NewImage(P; Si); NewImage(Q;Si)) always lower boundsD(P;Q).

Proof: LetPi denoteImage(P; Si) andQi denoteImage(Q; Si). LetP 0 = ��D
j=1(P ��

(j)
i) andQ0 = ��D

j=1(Q�

�
(j)
i). Then,D(P 0; Q0) = D(P;Q) since�i is orthonormal. Now,

P 0 = Pi +ReconV ect(P; Si) + ��D
j=di+1C

(j)
i �

(j)
i (10)

Q0 = Qi +ReconV ect(Q; Si) + ��D
j=di+1C

(j)
i �

(j)
i (11)

The vector distanceDist(P 0; Q0) between P’ and Q’ is

Dist(P 0; Q0) = Dist(Pi; Qi) + (ReconV ect(P; Si)� ReconV ect(Q; Si)) (12)

) D(P 0; Q0) = [D(Pi; Qi)
p + k ReconV ect(P; Si) kp � ReconV ect(Q; Si))

p
]
1=p

(13)

SinceLp functions obey triangle inequality,

k ReconV ect(P; Si)�ReconV ect(Q; Si) kp � j(ReconDist(P; Si;D)�ReconDist(Q; Si;D))j (14)

) D(P 0; Q0) � [D(Pi; Qi)
p + j(ReconDist(P; Si;D)�ReconDist(Q; Si;D))j

p]1=p (15)

Now,

D(NewImage(P; Si); NewImage(Q;Si)) = [D(Pi; Qi)
p + j(ReconDist(P; Si;D)�ReconDist(Q; Si;D))j

p]1=p

(16)

SinceD(P 0; Q0) = D(P;Q) and from Equations 15 and 16,

D(Q;P) � D(NewImage(P; Si); NewImage(Q; Si)) (17)

C Range Query Algorithm

RangeSearch(QueryQ = hQ; �;Di)

1 for (i=1; i � K; i++)
2 Qi NewImage(Q,Si);
3 Qi hQi; �;Di;
4 RangeSearchOnClusterIndex(Qi ; Ri; Si; result);
5 for eachO 2 O
6 if D(Q;O) � � result result [O;

RangeSearchOnClusterIndex(QueryQ, Node T, Cluster S, Set result)

1 if (T is a non-leaf node)
2 foreach childN of T
3 if MINDIST (Q;N;D) � � RangeSearchOnClusterIndex(Q, N,S, result);
4 else/* T is a leaf node */
5 for each objectO in T
6 if D(Q;O) � �

7 if D(Original(Q;S); Original(O;S)) � � result result [O;

Table 5: Range Query.

D Optimality of k nearest neighbor algorithm

Lemma 4 (Optimality of k-NN algorithm) The k-NN algorithm is optimal.

Proof: Let � = maxO2AD(Q;O) whereA is the set of final answers (the k nearest neighbors). The algorithm
is optimal if it does not explore any indexed objectO (in any cluster) (13-15) such thatD(NewImage(O; S),

NewImage(Q; S))> �. Let us assume that it does explore such an objectO. WhenO is explored,jresultj < k

because otherwise the algorithm would have terminated before reaching this point. We will show that whenO is
explored,jresultj is at leastk and hence prove the lemma (by contradiction). EachO0 2 A has been explored
beforeO sinceD(NewImage(O0; S); NewImage(Q;S)) � � < D(NewImage(O; S);NewImage(Q;S))

(by property of min-priority queue). Nowtop:dist = D(NewImage(O; S) ; NewImage(Q;S)) whenO is
explored i.e.top:dist > �. Since eachO0 2 A satisfies the conditionD(Q;O) � �, it satisfies the condition
D(Q;O) < top:dist and is hence added toresult (Line 7). Sojresultj is at leastk.

E Analysis of the height and balance of the global index structure

LethGI denote the the height of GI. Lethorig denote the height of the original space index i.e. index on the entire
dataset in theD-d original space. We assume that the multidimensional index structure used as the original space
index is same as the one used to index the clusters (e.g., hybrid tree in both cases). Then,hGI � 1+ horig. Since
Ii is built on a subset of points of the entire set (i.e.ni � N) and fewer dimensions (i.e.di � D), its heighthIi
cannot be greaterhorig . SincehGI = 1 +maxihIi andhIi � horig for all i, hGI � 1 + horig . The bound is a
conservative one as thehGI is usually smaller thanhorig due to the reduced size of the index.

We now show that GI is almost height-balanced. There are two factors that affect the height of a cluster
indexIi: the number of pointsni and the subspace dimensionalitydi. Lower the value ofni, lower the height.
Also, lower the value ofdi, lower the height. LetIshort be the shortest index. Notenshort � MinSize. Let

Cshort andFshort denote the average number of entries in a leaf and index node ofIshort respectively Then, as
explained in [23], the minimum possible height ofIshort is (1+dlogFshort(d

MinSize
Cshort

e)e) Similarly, the maximum
possible height of tallest indexItall is (1 + dlogFtall(d

N
Ctall

e)e) sincentall � N . For space partitioning index
structures (which is preferred for high dimensional indexing due to its “dimensionality-independent” fanout),

Fshort � Ftall (say,F) [7]. Cshort andCtall depend on the respective subspace dimensionalities i.e.Cshort

Ctall

dtall
dshort

.

The maximum differencelmax in the lengths ofanytwo paths fromR to leaf islmax � logF (
N�Cshort

MinSize�Ctall
) i.e.

lmax � logF (
N�dtall

MinSize�dshort
). Usually, the subspace dimensionalities are close i.e.dtall � dshort. For space-

partitioning indexes,F is typically around 50-100 [7]. Under the above assumptions,lmax � 1 if MinSize � N
50

andlmax � 2 if MinSize � N
2500. In other words, with a proper size bound,lmax is usually 1 or at most 2,

implying that GI is almost height balanced.

F Synthetic Data Generation

In order to generate the synthetic data, we use a method similar to that discussed in [45] but appropriately
modified so that we can generate the different clusters in subspaces of different orientations and dimensionalities.
The input parameters to the data generator is shown in Table 6. The generator generatesk clusters with a total of

n:(1�o) points distributedamong them using a Zipfian distributionwith valuezsize . The subspace dimensionality
of each cluster also follows a Zipfian distribution with valuezdim, the average subspace dimensionality beingd.
Each cluster is generated as follows. For a cluster with sizeni and subspace dimensionalitydi (computed using
the Zipfian distributions described above), we randomly choosedi dimensions among theD dimensions as the
subspace dimensions and generateni points in thatdi-d plane. Along each of the remaining(D � di) non-

subspace dimensions, we assign a randomly chosen coordinate to all theni points in the cluster. Letfj be the
randomly chosen coordinate along thejth non-subspace dimension. In the subspace, the points are spatially
clustered into several regions (c regions on average) with each region having a randomly chosen centroid and an
extent ofr from the centroid along each of thedi dimensions. After all the points in the cluster are generated, each

Parameter Description Default Value
n Total number of points 100000
D Original Dimensionality 64
k Number of clusters 5
d Average subspace dimensionality 10

zdim Skew in subspace dimensionality across clusters 0.5
zsize Skew in size across clusters 0.5
c Number of spatial clusters per cluster 10
r Extent of a spatial cluster from centroid along each subspace dimension 0.5
p Maximum displacement of points along eachnon-subspace dimension 0.1
o Fraction outliers 0.05

Table 6: Input parameters to Synthetic Data Generator

point is displaced by a distance of at mostp in either direction along each non-subspace dimension i.e. the point
is randomly placed somewhere between(fj�p) and(fj+p) along thejth non-subspace dimension. The amount

of displacement (i.e. value ofp) determines the degree of correlation (sincer is fixed). Lower the value, more
the correlation. To make the subspaces arbitrarily oriented, we generate a random orthonormal rotation matrix
(generated using MATLAB) and rotate the cluster by multiplying the data matrix with the rotation matrix. After
all the clusters are generated, we randomly generateN:o points (with random values along allD dimensions) as

the outliers. The default values of the various parameters is shown in Table 6.

G Sensitivity toMaxReconDist parameter

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30 35 40

I/O
 C

os
t (

r
an

do
m

dis
k a

cc
es

se
s)

Dimensions

MaxReconDist=0.05
MaxReconDist=0.08

MaxReconDist=0.1
MaxReconDist=0.2

Figure 16: Sensitivity of I/O cost of
LDR technique to MaxReconDist.

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30 35 40

CP
U

Co
st

(se
c)

Dimensions

MaxReconDist=0.05
MaxReconDist=0.08

MaxReconDist=0.1
MaxReconDist=0.2

Figure 17:Sensitivity of CPU cost of
LDR technique to MaxReconDist.

Figures 16 and 17 shows the sensitivity of the LDR technique to theMaxReconDist parameter in terms of
I/O and CPU costs respectively. The I/O cost improves with decrease inMaxReconDist due to decrease in
the information loss (i.e. fewer false positives) and hence decrease in post processing cost. However, with the

decrease inMaxReconDist, the number of outliers increase as fewer points satisfy the reconstruction distance
bound which causes the CPU cost to increase (the cost of scanning the outlier set) as shown in the Figure 17. The
choice ofMaxReconDistmust consider the combined I/O and CPU cost; for example,MaxReconDist = 0:08

represents a good choice for this real-life dataset.

